Survey of atmospheric and cirrus properties using longterm datasets (TOVS Path-B, ISCCP)

Claudia Stubenrauch
Atmospheric Radiation Analysis (ARA) group
Laboratoire de Météorologie Dynamique, Ecole Polytechnique, France
Longterm global satellite climatologies

- ISCCP: cloud & surface properties
- TOVS: cloud, atmospheric & surface properties
 data reanalysis

Cirrus <-> atmospheric properties

- regional and seasonal variations
- compared to results of measurement campaigns (INCA)
- correlations to volcanic eruptions and cosmic ray intensity
- longterm variability?
Longterm global cloud climatologies

Imagers on geostationary and polar satellites: since 1983

ISCCP (Rossow et al., BAMS Nov 1999) 1983-2001

♦ 2 radiances during daylight (1 IR + 1 VIS)
♦ every 3 hours, 5 km resolution sampled to 30 km, 2.5°

CA, T_{cld}, \tau, p_{cld}

TOVS vertical sounders on polar satellites: since 1979

Path-B (Scott et al., BAMS Dec 1999) \ldots, 1987-1995,\ldots

♦ good spectral resolution (HIRS:19 IR, 1 VIS, MSU: 4 \mu w)
♦ every 6 hours, 20 km resolution, averaged over 1°

CA, p_{cld}, N_e, T_{cld}

♦ Near-nadir, sampled HIRS observations
3I Inversion (Chédin, Scott 1985)

T, H₂O profiles + cloud properties

Based on: controlled use of a priori information

T(pₖ), H₂O(pₖ), Tₛ from radiosondes

4A radiative transfer

R_{clr}(λᵢ,θ), R_{cld}(λᵢ,pₖ,θ) per airmass (5), land – sea

MSU+HIRS \(R_m(λᵢ,θ) \) along H₂O, CO₂ absorption bands

TIGR dataset

Thermodynamic Initial Guess Retrieval
Extension of TOVS Path-B database

- Collocate **ERA40** radiosonde collection with TOVS (100 km, 3h)

- Identify *clear sky* scenes

- Computation of **bias corrections** $T_{\text{obs}}(\lambda_i) - T_{\text{calc}}(\lambda_i)$ using improved 3R (*seasonal averages*)

- Comparison with NOAA - DSD5 dataset

- Reanalysis
TOVS multispectral cloud detection

MSU probes through clouds

\[|T_B(\text{MSU}_2) - \Sigma b_i T_i(\sim 15\mu m)| > 1.5K \]

peak: 700hPa 100, 400, 600, 800, 900hPa

Cloud property retrieval (from averaged radiances)

4 channels in 14\(\mu\)m \(CO_2\)-band + 11 \(\mu\)m
max weights: 400-900 hPa surface

\[N_{\varepsilon}(p_k) \text{ coherence} \]

\[N_{\varepsilon}(p_k) = \sum_{i=4}^{8} \frac{R_m(\lambda_i) - R_{cl}(\lambda_i)}{R_{cl}(p_k,\lambda_i) - R_{cl}(\lambda_i)} \]

\[\min \chi_w^2(p_k) \rightarrow p_{\text{cl}, N_{\varepsilon}} \]

(Stubenrauch et al.1999)
Average regional cloud properties

8 year (1987-1995) TOVS Path-B / ISCCP

<table>
<thead>
<tr>
<th>Cloud type amounts (%)</th>
<th>NH midlat.</th>
<th>tropics</th>
<th>SH midlat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep convection</td>
<td>3.0</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Cirrus</td>
<td>24.7</td>
<td>20.3</td>
<td>44.8</td>
</tr>
<tr>
<td>Mid-level</td>
<td>16.2</td>
<td>22.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Low-level</td>
<td>27.1</td>
<td>26.4</td>
<td>20.6</td>
</tr>
</tbody>
</table>

IR vertical sounders:
identify Ci day + night
more sensitive to Ci: globe +8%
 midlat. +4%
 tropics +20%
High clouds not observed by radiometers

SAGE II: 1984 – 1991, **SAGE III:** since 2002

Limb occultation sunrise / sunset at 1µm, 0.5 µm, (7 / 11 λ’s)

Path: 200km (x 2.5 km)

<table>
<thead>
<tr>
<th>L (km)</th>
<th>High cloud amount (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January / July</td>
</tr>
<tr>
<td>200</td>
<td>74.6 / 69.0</td>
</tr>
<tr>
<td>75</td>
<td>32.1 / 29.7</td>
</tr>
</tbody>
</table>

ISCCP-SAGE => L=75 km
(Liao et al. 1995)

HIRS-SAGE => L=130 km
(Wylie + Wang 1997)

<table>
<thead>
<tr>
<th>subvisible Ci</th>
<th>Cirrus</th>
</tr>
</thead>
<tbody>
<tr>
<td>January / July</td>
<td>January / July</td>
</tr>
<tr>
<td>200</td>
<td>24.4 / 22.5</td>
</tr>
<tr>
<td>75</td>
<td>10.5 / 9.3</td>
</tr>
</tbody>
</table>

1/3 of high clouds: subvisible Ci
(not observed by radiometers)

\[CA_{\text{high SAGE}} > CA_{\text{high TOVS}} > CA_{\text{high ISCCP}} \]

C. Stubenrauch
Final CIRAMOSA meeting 20-21/11/2003
Time series of TOVS Path B high cloud frequencies

NOAA10/12 7h30 AM&PM

- Ci, thin Ci stable over 8 years within 2%
- NH mid: strong seasonal cycle of thin Ci
- SH mid: seasonal cycle of Ci
- Perhaps slight decrease of Ci in midlat.?
Trend analysis

Changes in eff. high CA and T of high clouds

Slight decrease of T of high clouds in subtropics?

Or stronger activity in ITCZ?

be careful of satellite change

Dataset not yet long enough for trend analysis
Analysis of field campaign measurement regions

INCA measurement campaigns: Apr/May 2000 in SH and Sep/Oct 2000 in NH

More variability in regions than in latitude bands

NH INCA:
- thin Ci no seas. cycle
- max Ci in spg/aut

SH INCA:
- max thin Ci and Ci in spg
Relative humidity \(RH = \frac{e^{\text{ice}}}{e^{\text{sat}}} \) \(\text{ice}(T) \)

in case of clear sky and thin cirrus \((N_\varepsilon < 0.5) \)

- TOVS Path-B precipitable water columns: 500 – 300 hPa, < 300 hPa
 \[W = \int_{p}^{p_0} q_s \frac{dp}{g \rho} \]
 \[q_s = \frac{mv}{md+mv} = \frac{wv}{1+wv} = 0.622 \frac{e}{p-(1-0.622)e} \]

- Use closest TIGR atmospheric T profile (30 levels)
 to compute \(e^{\text{sat}}_\text{ice}(T) \) and integrate \(q^{\text{sat}}_\text{ice} \) over column
 \[RH(\text{column}) = g \rho \frac{W}{\int q^{\text{sat}}_\text{ice}(p)dp} \]

8-year distribution of RH for clear sky, very thin Ci and thin Ci

- More large RH values for Ci than clear sky
- SH INCA thin Ci have more RH than those in NH INCA region
TOVS D_e analysis in INCA regions

4-year averages of D_e and IWP as fct of RH
for thin Ci ($0.3 > \varepsilon_{cl} > 0.4$)

Interannual $<D_e>$ variability

<table>
<thead>
<tr>
<th>Year</th>
<th>NH</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>44µm</td>
<td>34µm</td>
</tr>
<tr>
<td>1989</td>
<td>44µm</td>
<td>40µm</td>
</tr>
<tr>
<td>1990</td>
<td>46µm</td>
<td>33µm</td>
</tr>
</tbody>
</table>

D_e, IWP increase with RH
- slightly larger in NH than in SH
(in agreement with MODIS analysis)
cannot be explained by different cloud thickness

INCA flight measurements:

D_e of young Ci slightly smaller in NH!
Crystal shapes in NH and SH similar
IWP and vertical D_e profiles?

C. Stubenrauch Final CIRAMOSA meeting 20-21/11/2003
High cloud amount evolution:
correlation with cosmic rays, volcanic eruptions?

Stubenrauch + Eddounia, CERN Proceedings 2001
Workshop on Ion-Aerosol-Cloud Interactions

TOVS high effective CA stable (IR)!

Svensmark
Satellite observations:
- unique possibility to survey cloud properties over long period
 30% high clouds (+ 15% subvisible Ci),
 stable within 2% over globe
- synergy of satellite data and field measurements
- Trend analysis: careful of satellite drifts, calibration etc.
- Volcanic aerosols -> overestimation of $\tau_{\text{VIS}}^{\text{ISCCP}}$
 -> underestimation of high CA$^{\text{ISCCP}}$ (4.5% in tropics)
 high eff. CA$^{\text{TOVS}}$ stable (IR)

Svensmark’s ‘cosmic ray intensity - CA correlation’ analysis could not be confirmed!
Trends in global cloud fraction?

Effective cloud amount

TOVS Path B:
slight increase in Southern tropics

ISCCP:
slight decrease in tropics