The recent increase of methane as seen by IASI onboard MetOp-A in the tropical band

Cyril Crevoisier, Delphine Nobileau, Raymond Armante, Laurent Crépueau, Thibaud Thonat, Jérôme Perrin, Noëlle A. Scott, and Alain Chédin
Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau Cedex, France
Contact: cyril.crevoisier@lmd.polytechnique.fr

Introduction

Methane (CH₄) is the third most important greenhouse gas in the atmosphere, after water vapor and CO₂, and plays a significant role in tropospheric chemistry through its removal of OH. There is therefore a considerable interest in monitoring its concentration to better characterize its atmospheric budget and infer how it might evolve in the future.

The largest source of CH₄ comes from natural wetlands, mostly in the tropics, but also at mid-to-high northern latitudes. Most of the emitted CH₄ is destroyed in the atmosphere by tropospheric OH, predominantly in the tropics. The rate of increase in CH₄ has been steadily decreasing since the late 1980s, reaching a near-zero increase from 1999 to 2006. From the end of 2006 or beginning of 2007, a renewed growth of atmospheric CH₄ has been observed by surface networks until the most recent measurements (Rigby et al., 2009; Dlugokencky et al., 2009), potentially stemming from a combination of a slight change in CH₄ and increased emissions in northern high and low latitude regions.

Here, we present 3.5 years of mid-tropospheric methane derived from the Infrared Atmospheric Sounding Interferometer (IASI) over the tropics, spanning July 2007-Feb. 2011, from which we infer characteristics of tropospheric methane and its most recent evolution.

The retrieval method

Use is made of a non linear inference scheme based on neural networks (Crevoisier et al., 2009), initially designed for the retrieval of CO₂ (Chédin et al., 2003).

- Simultaneous use of IR (IASI) channels sensitive to T and CH₄ and of MW (AMSU also flying onboard MetOp-A) channels only sensitive to T allows to decorrelate T/CH₄.
- The retrieval is limited to the tropical zone because of the greater stability of the tropospheric temperature vertical which yields a better precision.

3.5 years of mid-tropospheric CH₄

Zonally averaged tropical distribution of mid-tropospheric CH₄ as retrieved from IASI from Jul 2007 to Feb 2011.

Seasonal cycle:
- more pronounced in the northern (+25 ppbv) than in the southern (+15 ppbv) tropics.
- In the northern tropics: maximum in November and minimum in March-April.
- In the southern tropics: more complex seasonal variation due to year-to-year fluctuations of the wind distribution at ~300 hPa which modulates the inter-hemispheric transport during ENSO phases (Prinn et al., 1992), yielding enhanced exchanges in December-May during cold phases (as in 2007 and 2008), and a cancellation in the southern tropics of the summer minimum due to photochemical destruction of methane.
- Interhemispheric gradient:
- North to South decrease of about 30 ppbv.
- Excellent agreement with aircraft measurements performed in 1993 at 10.11 km (Matsueda and Insue, 1996) that corresponds to the peak of sensitivity of IASI, lower by more than a factor of 2 when compared to the gradient estimated from surface measurements.
- Methane is well mixed in the southern tropics while a gradient persists with methane regularly increasing with latitude in the northern tropics.
- Precision: 18 ppbv for one month on a 5°×5° resolution.

The IASI instrument

IASI, developed by CNES in collaboration with EUMETSAT, is a Fourier Transform Spectrometer based on a Michelson Interferometer, coupled to an integrated imaging system that measures infrared radiation emitted from the Earth.

- Launched on 19th October 2006 onboard MetOp-A and declared operational in July 2007, IASI provides:
 - 8461 spectral channels between 645 and 2760 cm⁻¹ (15.5 - 3.63 µm).
 - With a spectral resolution of 6.5 cm⁻¹ after apodisation.
 - The spectral sampling interval is 0.25 cm⁻¹.
- IASI channels are sensitive to methane around 7.7 µm as can be seen in the figure below that shows the variation of Brightness Temperature induced on each IASI channel by a typical variation of various atmospheric gas concentrations. These simulations have been performed on the TIGR atmospheric database, with the 4AOP-2009 radiative transfer code using the last version of the GEISA spectroscopic database.

For each channel and each TIGR situation, the variation of BT (in K) for a given variation of one atmospheric variable is computed using the 4AOP-2009 Jacobians:

\[
\Delta T(\Delta q) = \sum \chi_{ij} \Delta q_j
\]

where \(\chi_{ij} \) is the Jacobian allowing to decorrelate the different gas distributions.

According to the CH₄ Jacobians, which are plotted on the left hand side, IASI channels are mostly sensitive to CH₄ in the mid-troposphere.

Retrieval of a mid-tropospheric integrated content of CH₄

IASI shows an increase of mid-tropospheric CH₄ from 2007 to 2009, larger in the southern than in the northern tropics for 2007 and 2008, in agreement with the renewed growth of methane measured at the surface since the end of 2006 (Rigby et al., 2009, Dlugokencky et al., 2009), IASI shows a decrease of CH₄ in 2010.

This evolution is consistent with the increase of CH₄ emission from tropical wetlands due to enhanced La Niña precipitation in 2007 and 2008. IASI data suggests a slowing down of the increase in 2009, and a decrease in 2010. This evolution is in agreement with the evolution of precipitation in the tropics as measured by TRMM and the absence of significant change in fires, and thus in biomass burning CH₄ emission, in the tropical region over 2007-2009.

Year-to-year evolution

Comparison with TMS simulations (constrained by NOAA surface stations and SCIAMACHY and sampled at IASI resolution) from 2007 to 2010 (courtesy of P. Bergamaschi) shows good agreement in terms of North-South gradient and geographic distribution.

Conclusion

CH₄ fields retrieved from IASI seem to confirm that tropical wetland emissions driven by higher than average precipitation are one of the main drivers of the 2007-2008 increase. The 2010 decrease of methane suggested by IASI is also supported by the drop in precipitation over this year in wetland tropical regions.

Only continuous measurements of methane from a variety of instruments (at the surface, airborne and spaceborne) will help to better understand atmospheric methane budget and its evolution. The results presented here show that IASI can provide a powerful constraint on the monitoring and understanding of atmospheric methane burden. With the launch of two other successive IASI-like instruments scheduled for 2012 and 2016, more than 20 years of observations of mid-tropospheric methane will be available for climate studies.