Cloud properties & bulk microphysical properties of semi-transparent cirrus from InfraRed Sounders (TOVS, AIRS, IASI)

Claudia Stubenrauch
A. Guignard, N. Lamquin*, R. Armante, A. Feofilov

ABC(t) – ARA team

Laboratoire de Météorologie Dynamique / IPSL, France

> Feb 2010, at ACRI

Mar 2012

ITSC-18, Toulouse
Sounders: TOVS, ATOVS, AIRS, IASI (1,2,3), IASI-NG

- long time series -> climate studies
- retrieval day & night
- increasing spectral resolution:
 - -> increasing vertical resolution (H₂O & T profiles)
 - -> decreasing noise (cirrus)

A-Train synergy (AIRS-CALIPSO-CloudSat):
- unique opportunity for global retrieval method validation
- vertical structure of cloud types

- retrieval & evaluation
- cirrus occurrence, phys. & microphys. properties
- determination of ice supersaturation within atmospheric layers
- link between ISS and cirrus
Cloud property retrieval: TOVS, AIRS, IASI

\[R_m(\lambda_i) \] along CO₂ absorption band around 15 μm

\[\varepsilon(p_k, \lambda_i) \] coherence

\[\varepsilon(p_k) = \sum_{i=1}^{N} \frac{R_m(\lambda_i) - R_{clr}(\lambda_i)}{R_{cld}(p_k, \lambda_i) - R_{clr}(\lambda_i)} \]

\[\varepsilon_{cld}, p_{cld} \] (Stubenrauch et al. 1999, 2006, 2008, 2010)

\[\varepsilon(\lambda, De, IWP) \] simulated

\[\text{min of } \chi_w^2(p_k) \] on spectral cloud emissivities

\[\text{cirrus emissivities (8 - 12 } \mu \text{m)} \]

\[\text{\textit{De, IWP}} \]

\[\text{3I-TOVS (Scott et al. 1999)} \]

\[\text{NASA-AIRS (Susskind et al. 2003)} \]

\[\text{NOAA-IASI (Gambacorta et al.)} \]

atmospheric temperature & water vapor profiles, \(T_{\text{surf}} \)

\[\Rightarrow \] thermodynamic state of atmosphere: select TIGR atmosphere (proximity recognition)

atm. spectral transmissivities from TIGR

+ spectral surface emissivities

\[\text{no assumption on microphysics} \]

\[\text{\textit{4A-DISORT + SSP of ice crystals}} \]

\[\text{hex. columns, aggregates} \]

\[\text{(CIRAMOSA, Rädel et al. 2003, Stubenrauch et al. 2004, Guignard et al. 2012)} \]
A-Train Synergy: evaluation & vertical cloud structure

Stubenrauch et al. ACP, 2008, 2010

Evaluation of cloud height

$p_{\text{cl}(\text{AIRS})}$ corresponds to:
midlevel of ‘apparent’ cloud (COD<3)
for clouds with diffusive tops:
$z_{\text{cl}(\text{AIRS})}$ on av. 1.5 km below cloud top

Cloud vertical extent for different cloud types

Δz (thin Ci) $< \Delta z$(Ci) $< \Delta z$(hgh op)
\rightarrow determine climatology of cloud vertical extent per cloud type
important input for determination of earth radiation budget
Occurrence of high-level clouds \((p_{cld} < 440 \text{ hPa})\)

Comparison of 12 Global Cloud Datasets

Global gridded L3 data \((1^\circ \times 1^\circ)\): monthly averages, variability, Probability Density Functions

- **Stubenrauch et al. WCRP, 2012**

- **Cloud Assessment co-chairs:** C. Stubenrauch, S. Kinne

- IASI cloud climatology

- **IASI-LMD**
- **AIRS-LMD**
- **TOVS-B**
- **CALIPSO**

 - **ISCCP**
 - **PATMOSx**

 - **ATSR**
 - **HIRS**
 - **MODIS-CE**
 - **MODIS-ST**
 - **CALIPSO-ST**
 - **CALIPSO-GOCCP**

- Global CA 65-70% (+5% subvisible Ci)
- 40 – 50% of all clouds are high-level clouds

- Uncertainties & biases depend on cloud scene:
 - **CAHR** depends on instrument performance to identify thin Ci
 - Active lidar > IR sounders > VIS-NIR-IR imagers > multi-angle VIS imagers
 - Geographical distributions & seasonal cycles similar

Vertical sounders:
- **Sensitive to Ci properties** (also for multi-layered cloud systems; day & night)

IASI Cloud Climatology

July

- Hilton et al., BAMS 2011
Microphysical properties of semi-transparent cirrus

PhD thesis Guignard 2012; Guignard et al. ACP 2012

Ci spectral \(\varepsilon\) difference increases with decreasing \(De\)

\[
D_e = 2 \int \frac{3V}{4p} n(r) \, dr = \frac{3}{2} \int \frac{IWC}{P_i P} \frac{p}{p} n(r) \, dr
\]

- \(P_{cld} < 440\) hPa, \(0.20 < \varepsilon_{cld} < 0.85\); sensitivity: \(D_e < 90\) \(\mu\)m, \(IWP < 120\) g/m\(^2\)
- 6 AIRS channels -> crystal habit
- Global biases due to assumptions < 5%

- \(D_e\) increases with \(T_{cld}\) up to 230 K; \(T_{cld} > 230\) K: liquid droplets influence retrieval

50% of semi-transparent high clouds are pure ice
IR sounders, ISCCP: large peak at 32 µm, second peak of ISCCP at 18 µm: misidentified I-W?

peaks of MODIS-ST & ATSR-GRAPE at 27 µm linked to sub-sampling of optically thicker clouds & not to different channels (3.7 / 2.1 / 1.6 µm)

-> only retrieved near cloud top

Distributions depend on sub-sampling & fraction of partly cloudy fields (Ci over low clds)

AIRS/TOVS compact distributions 5 - 100 gm⁻²
MODIS-ST distribution starts at 10 gm⁻²
ISCCP, PATMOSx additional large peak at 4 gm⁻² (regions with low clouds, partly cloudy pixels?)
Parameterization of De as function of IWC

(A-Train Synergy)

Guignard et al. ACP 2012

\[\Delta Z < 2 \text{km} \]

\[\text{De (um)} \]

\[\text{IWC (g/m}^3\)\]

\[p_{\text{cl}d} < 440 \text{ hPa}, 0.20 < \varepsilon_{\text{cl}d} < 0.85, T_{\text{cl}d} < 230 \text{ K} \]

- logarithmic increase of De with IWC (for small vert. extent)
- similar behaviour in tropics & NH midlatitudes, summer / winter
- slightly different slope in SH midlatitudes

preliminary comparison with De-IWC from DARDAR cloud data very encouraging!
How can we detect ice supersaturation (ISS)?

PhD thesis Lamquin 2009; Lamquin et al., ACP 2012

IR Sounders retrieve water vapour within atmospheric layers of km’s

=> underestimation of RH_{ice}:
AIRS peak for cirrus at 70% (instead of 100%)

improved spectral resolution: IASI peak for cirrus at 80-85%

ISS often occurs in vertical layers < 500 m

determine probability of ISS presence in layer
by calibration with MOZAIC (commercial aircraft)
Influence of ISS occurrence on Cirrus occurrence

Ci occurrence from CALIPSO (including subvisible Ci)

extending results of Gierens (2000)
(using MOZAIC data in NH midlat)

- Ci occurrence increases with ISS occurrence
- stronger increase in tropics than in midlatitudes
 (different formation mecanism?)
Conclusions

- IR sounders sensitive to cirrus (also for multi-layered cloud systems, day & night)
- \(p_{\text{cld}} \) corresponds to midlevel of apparent cloud depth
 (slightly below height of max backscatter)
- Uncertainty estimation from \(\chi^2 \) : on av 40 hPa (4 K in \(T_{\text{cld}} \))
 AIRS-LMD L2 cloud data soon distributed by ICARE: http://www.icare.univ-lille1.fr/

- 40% of all clouds are high-level clouds
 - 70% of all high-level clouds are semi-transparent clouds
 - 50% consist only of ice crystals (mostly aggregates)

- Retrieval of De, IWP, ice crystal shape seems to be coherent:
 - De increases logarithmically with IWC (IWP) -> parameterization for GCM’s
 - first comparisons with colocated CloudSat-CALIPSO DARDAR data promising!!!

- A-Train constellation allowed to validate AIRS retrievals for transfer to IASI

- \(R_{\text{ice}} \) determined over coarse atmospheric layers
 - increase in spectral resolution -> increase of vertical resolution
 - \(R_{\text{ice}} \) of Ci peaks at 70% for AIRS / 85% for IASI (instead of 100% in-situ)
- Ice SuperSaturation can be detected after calibration with MOZAIC
- Ci occurrence increases with ISS occurrence
This work was supported by CNRS and CNES.

We also thank all Science teams as well as the engineers and space agencies for their efforts and cooperation in providing the data!

data processing possible thanks to Ether, Icare and ClimServ centers